
A Novel Heterogeneous Algorithm for Multiplying
Scale-Free Sparse Matrices

Kiran Raj Ramamoorthy, Dip Sankar Banerjee, Kannan Srinathan and Kishore
Kothapalli.

C-STAR, IIIT Hyderabad.

Outline

• Inspiration :: Heterogeneous Platform & Challenges

• Introduction :: Sparse Matrix-Matrix Multiplication (SPMM)

• Earlier Work :: Row-Row (K. Matam et. al)

• Our Approach :: HH-CPU

• Implementation :: Notes

• Results :: Datasets (SNAP, Synthetic …), Experiments & Discussion

• Other Approaches :: Work Queue & its variations

• Conclusion :: Future Work & References

Heterogeneous Platform

CPU GPU

Send Results

Send Data

Send Code

Heterogeneous Platform

Data Transfer

Data Transfer

CPU GPU

Send Results

Send Data

Send Code

Data Transfer

Data Transfer

Challenges
• Which portion of input is processed

by which device ?

• Static Partitioning input is a good
solution to obtain high performance
on heterogeneous platforms.

• However, compute capability of
each entity is different &
performance of device is dependent
on nature of input.

• Simple/Static partitioning is not
optimal.

• Is it possible to come up with
partitioning techniques for
heterogenous platforms and
applications ?

Our Goal

• To propose a novel heterogeneous algorithm for sparse
matrix-matrix multiplication that,

• not only, balances load across heterogeneous devices
in computing platform.

• but also, assigns "right" work to the "right" processor.

Sparse Matrix

• Matrix in which most of the elements are zero.

• i.e. nnz = k * n

• Example

Real-World Matrices

Usually datasets in Data
Mining, Social Network
Analysis & Communication
Networks are very large.

Nature of Real-world
Matrices

These graphs are highly
irregular & scale-free with
a power-law degree
distribution.

Dense Row

Sparse Matrix-Matrix Multiplication

• Compute C = A x B, where A, B are two sparse matrices.

• Why is it hard in a heterogeneous setting ?

• Sparse nature of matrix makes it hard for programmers
to exploit CPU’s cache hierarchy (tiling) to achieve
performance.

• Irregular computation implies thread load imbalance &
hence not suitable for GPUs.

Row-Row Formulation

• K. Matam et. al, proved row-row formulation of matrix
multiplication out performs usual row-column formulation
for SPMM in GPUs.

C(i,:) = A(i, j)*B(j,:)
j∈Ii(A)∑

Row-Row Formulation Example

0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

A =
2 3 4
8 0 0
0 0 6
0 7 0

B =
16 0 6
0 7 6
2 3 10
4 34 8

A x B =

C(1, :) =

0 1 2 3

0

1

2

3

Row-Row Formulation Example

0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

A =
2 3 4
8 0 0
0 0 6
0 7 0

B =
16 0 6
0 7 6
2 3 10
4 34 8

A x B =

C(1, :) =

0 1 2 3

0

1

2

3

2 *

Row-Row Formulation Example

0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

A =
2 3 4
8 0 0
0 0 6
0 7 0

B =
16 0 6
0 7 6
2 3 10
4 34 8

A x B =

C(1, :) =

0 1 2 3

0

1

2

3

[8 0 0]2 *

Row-Row Formulation Example

0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

A =
2 3 4
8 0 0
0 0 6
0 7 0

B =
16 0 6
0 7 6
2 3 10
4 34 8

A x B =

C(1, :) =

0 1 2 3

0

1

2

3

[8 0 0] + 1 *2 *

Row-Row Formulation Example

0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

A =
2 3 4
8 0 0
0 0 6
0 7 0

B =
16 0 6
0 7 6
2 3 10
4 34 8

A x B =

C(1, :) =

0 1 2 3

0

1

2

3

[8 0 0] + 1 * [0 0 6]2 *

Row-Row Formulation Example

0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

A =
2 3 4
8 0 0
0 0 6
0 7 0

B =
16 0 6
0 7 6
2 3 10
4 34 8

A x B =

C(1, :) =

0 1 2 3

0

1

2

3

[8 0 0] + 1 * [0 0 6] = [16 0 6]2 *

Row-Row Formulation Example

0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

A =
2 3 4
8 0 0
0 0 6
0 7 0

B =
16 0 6
0 7 6
2 3 10
4 34 8

A x B =

C(1, :) =

C(2, :) = 1 * [0 0 6] + 1 * [0 7 0] = [0 7 6]

0 1 2 3

0

1

2

3

[8 0 0] + 1 * [0 0 6] = [16 0 6]2 *

Row-Row Formulation Example

0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

A =
2 3 4
8 0 0
0 0 6
0 7 0

B =
16 0 6
0 7 6
2 3 10
4 34 8

A x B =

C(1, :) =

C(2, :) = 1 * [0 0 6] + 1 * [0 7 0] = [0 7 6]

C(3, :) = 1 * [2 3 4] + 1 * [0 0 6] = [2 3 10]

0 1 2 3

0

1

2

3

[8 0 0] + 1 * [0 0 6] = [16 0 6]2 *

Row-Row Formulation Example

0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

A =
2 3 4
8 0 0
0 0 6
0 7 0

B =
16 0 6
0 7 6
2 3 10
4 34 8

A x B =

C(1, :) =

C(2, :) = 1 * [0 0 6] + 1 * [0 7 0] = [0 7 6]

C(3, :) = 1 * [2 3 4] + 1 * [0 0 6] = [2 3 10]

C(4, :) = 2 * [2 3 4] + 4 * [0 7 0] = [4 34 8]

0 1 2 3

0

1

2

3

[8 0 0] + 1 * [0 0 6] = [16 0 6]2 *

Thread Load Imbalance

x

HH-CPU

• Classify each row of sparse matrix into high dense and
low dense. Now we can write SPMM as,

C = A x B
=> C = (AH + AL) x (BH + BL)
=> C = AH x BH + AL x BL + AH x BL + AL x BH

• Each multiplication above has certain properties that
helps us to map it to a device that performs better.

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

0 2 1 0
0 0 0 0
3 2 2 1
0 0 0 0

AH =
0 2 1 0
0 0 0 0
3 2 2 1
0 0 0 0

BH =
3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH =

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 5

AL =
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 5

BL =
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL =

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

0 2 1 0
0 0 0 0
3 2 2 1
0 0 0 0

AH =
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 5

BL =
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL =

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL

+

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 5

AL =
0 2 1 0
0 0 0 0
3 2 2 1
0 0 0 0

BH =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

AL x BH =

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL

+

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL

+
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

AL x BH

=

Example

0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

A = B =

3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

C =
0 2 1 0
0 1 0 0
3 2 2 1
0 0 0 5

3 2 2 1
0 0 0 0
6 10 7 2
0 0 0 0

AH x BH

+
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 25

AL x BL

+
0 2 0 0
0 0 0 0
0 2 0 5
0 0 0 0

AH x BL

+
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

AL x BH

=
3 4 2 1

0 1 0 0

6 12 7 7

0 0 0 25

Phase I

• CPU, GPU :: Identify thresholds tA, tB and the matrices AH,
AL, BH, BL.

A =

Phase I

• CPU, GPU :: Identify thresholds tA, tB and the matrices AH,
AL, BH, BL.

A =

tA

Phase I

• CPU, GPU :: Identify thresholds tA, tB and the matrices AH,
AL, BH, BL.

A =

tA

A =

Phase I

• CPU, GPU :: Identify thresholds tA, tB and the matrices AH,
AL, BH, BL.

A =

tA

A =

AH

Phase I

• CPU, GPU :: Identify thresholds tA, tB and the matrices AH,
AL, BH, BL.

A =

tA

A =

AH

AL

Phase II

• In parallel,
CPU :: Compute AH * BH.
GPU :: Compute AL * BL.

Phase II

• In parallel,
CPU :: Compute AH * BH.
GPU :: Compute AL * BL.

AH = BH =

Phase II

• In parallel,
CPU :: Compute AH * BH.
GPU :: Compute AL * BL.

AH = BH =

Phase II

• In parallel,
CPU :: Compute AH * BH.
GPU :: Compute AL * BL.

AH = BH =

Phase II

• In parallel,
CPU :: Compute AH * BH.
GPU :: Compute AL * BL.

AH = BH =

Phase II

• In parallel,
CPU :: Compute AH * BH.
GPU :: Compute AL * BL.

AH = BH =

Phase II

• In parallel,
CPU :: Compute AH * BH.
GPU :: Compute AL * BL.

AH = BH =

AL = BL =

Phase II

• In parallel,
CPU :: Compute AH * BH.
GPU :: Compute AL * BL.

AH = BH =

AL = BL =

Phase III

• In parallel,
CPU :: Compute AL * BH. [WorkQueue Mode]
GPU :: Compute AH * BL.

Phase III

• In parallel,
CPU :: Compute AL * BH. [WorkQueue Mode]
GPU :: Compute AH * BL.

BL = AH = x

Phase III

• In parallel,
CPU :: Compute AL * BH. [WorkQueue Mode]
GPU :: Compute AH * BL.

BL = AH = x

Phase III :: Contd

• In parallel,
CPU :: Compute AL * BH. [WorkQueue Mode]
GPU :: Compute AH * BL.

BH =

AL

x
CPU Start
CPU End

GPU Start
GPU End

Phase III :: Contd

• In parallel,
CPU :: Compute AL * BH. [WorkQueue Mode]
GPU :: Compute AH * BL.

BH =

AL

x
CPU Start
CPU End

GPU Start
GPU End

Phase III :: Contd

• In parallel,
CPU :: Compute AL * BH. [WorkQueue Mode]
GPU :: Compute AH * BL.

BH =

AL

xCPU Start
CPU End

GPU Start
GPU End

Phase IV

• CPU, GPU :: Combine results of Phases II & III.
• GPU to CPU :: Transfer the partial results from GPU to

CPU.

AH x BH AL x BL AH x BL AL x BH + + +

A x B

Timeline Diagram

CPU

GPU

Phase I Phase II Phase III Phase IV

Mark

AH x BH

AL x BL

AL x BH

AH x BL Merge

Implementation Details

• Sparse matrices A, B are stored in CSR format.

• We multiply A x A instead of A x B due to dataset unavailability. However we
show results for A x B in synthetically generated data for experiments.

• We consider only CPU & GPU for simplicity in the heterogeneous system.

• Phase 1 :: Thresholds (tA, tB) are empirically obtained.

• Phase 2, 3 :: We use modified version of Row_Row_SPMM developed by K.
Matam et. al for SPMM of partial matrices.

• Phase 3 :: Work units of CPU & GPU in work queue model is empirically
determined a-priori.

• Phase 4 :: Standard primitives like Mark, Scan & Merge are used.

Experimental Setup

• CPU :: Intel i7 980

• GPU :: Nvidia Tesla K20c (Kepler)

• CPU - GPU Link :: PCI Express version 2.0 link that
supports data transfer bandwidth of 8 GB/s.

• CUDA API Version 4.1 for Programming

Dataset (Scale-free &)α

Matrix Rows NNZ
scircuit 1,70,998 9,58,936 3.55

Webbase-1M 10,00,005 31,05,536 2.1

cop20kA 1,21,192 26,24,331 143.8

web-Google 9,16,428 51,05,039 3.75

p2p-Gnutella 62,586 1,47,892 48.9

ca-CondMat 23,133 1,86,936 3.58

roadNet-CA 19,71,281 55,33,214 133.80

internet 1,24,651 2,07,214 4.63

dblp2010 3,26,186 16,15,400 5.79

email-Enron 36,692 3,67,662 2.1

wiki-Vote 8,297 1,03,689 3.88

cit-Patents 37,74,768 1,65,18,948 3.90

α

100
101
102
103
104
105
106

25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

45
0

R

ow
s

NNZ

web-Google

HD = 6834
Threshold = 25

100
101
102
103
104
105
106
107

1 2 3 4 5 6 7 8 9 10

R

ow
s

NNZ

roadNet-CA

HD = 468149
Threshold = 3

Results :: Overall Improvement
Sp

ee
d

U
p

1.000

1.150

1.300

1.450

1.600

Matrices

W
eb

ba
se

-1
M

em
ai

l-E
nr

on

w
eb

-G
oo

gl
e

sc
irc

ui
t

w
ik

i-V
ot

e

ci
t-P

at
en

ts

ca
-C

on
dM

at

in
te

rn
et

db
lp

20
10

p2
p-

G
nu

te
lla

ro
ad

N
et

-C
A

co
p2

0k
A

Average: 25% Faster

< 2 2 to 4 4 to 5 >5

Results :: Profiling

 0.0625
 0.25

 1
 4

 16
 64

 256
 1024
 4096

sc
irc

ui
t

w
eb

ba
se

-1
M

co
p2

0k
A

w
eb

-G
oo

gl
e

p2
p-

G
nu

te
lla

31
ca

-C
on

dM
at

ro
ad

N
et

-C
A

in
te

rn
et

db
lp

-2
01

0
em

ai
l-E

nr
on

w
ik

i-V
ot

e
ci

t-P
at

en
ts

Ti
m

e
(m

s)

Matrix Instance

Phase I
Phase II

Phase III
Phase IV

Results :: Trade-Off

 0
 20
 40
 60
 80

 100
 120

0 10 20 30 40 50 60 70 80 90 10
0

Ti
m

e
(m

se
c)

Threshold

ca-CondMat

Phase 2
Phase 3

Total Time

 0

 400

 800

 1200

 1600

 2000

0 10 20 30 40 50 60 70 80 90

Ti
m

e
(m

se
c)

Threshold

cop20kA

Phase 2
Phase 3

Total Time

 0

 200

 400

 600

 800

 1000

0 1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
(m

se
c)

Threshold

roadNet-CA

Phase 2
Phase 3

Total Time

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(m

se
c)

Threshold

web-Google

Phase 2
Phase 3

Total Time

Experiments with Synthetic Datasets

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

3

3.
5 4

4.
5 5

5.
5 6

6.
5

Sp
ee

d
U

p

Alpha

N = 100K
N = 500K

N = 1M

Work Queue

• Why not apply work queue
completely ?

• CPU, GPU works with bunch of
rows (work-units) until all rows
are finished.

• Now, always amount of time
taken by CPU & GPU is (almost)
equal.

• Is it optimal ?

• No, since the rows processed
by CPU & GPU are random, it
might not be suited for the
device and hence not optimal.

CPU
GPU

Time

Almost Equal

CPU Start

CPU End

GPU Start

GPU End

Work Queue

• Why not apply work queue
completely ?

• CPU, GPU works with bunch of
rows (work-units) until all rows
are finished.

• Now, always amount of time
taken by CPU & GPU is (almost)
equal.

• Is it optimal ?

• No, since the rows processed
by CPU & GPU are random, it
might not be suited for the
device and hence not optimal.

CPU
GPU

Time

Almost Equal

CPU Start

CPU End

GPU Start

GPU End

Work Queue

• Why not apply work queue
completely ?

• CPU, GPU works with bunch of
rows (work-units) until all rows
are finished.

• Now, always amount of time
taken by CPU & GPU is (almost)
equal.

• Is it optimal ?

• No, since the rows processed
by CPU & GPU are random, it
might not be suited for the
device and hence not optimal.

CPU
GPU

Time

Almost Equal

CPU Start

CPU End

GPU Start

GPU End

Work Queue

• Why not apply work queue
completely ?

• CPU, GPU works with bunch of
rows (work-units) until all rows
are finished.

• Now, always amount of time
taken by CPU & GPU is (almost)
equal.

• Is it optimal ?

• No, since the rows processed
by CPU & GPU are random, it
might not be suited for the
device and hence not optimal.

CPU
GPU

Time

Almost Equal

CPU Start

CPU End

GPU Start

GPU End

Sorted Work Queue
• Sort the rows such that nnz

decreases. CPUs are better suited
for top portion of the matrix as they
are dense and can exploit cache
hierarchy while bottom portion is
suited for GPUs as input is almost
regular.

• Again amount of time taken by CPU
& GPU is (almost) equal.

• Is it optimal ?

• No, since amount of computation
done by each thread is primarily
dependant on the non-zeros in the
"B" matrix. This partition technique
still leads to thread divergence inside
a warp / block.

CPU
GPU

Time

Almost Equal

CPU Start

CPU End

GPU Start

GPU End

Sorted Work Queue
• Sort the rows such that nnz

decreases. CPUs are better suited
for top portion of the matrix as they
are dense and can exploit cache
hierarchy while bottom portion is
suited for GPUs as input is almost
regular.

• Again amount of time taken by CPU
& GPU is (almost) equal.

• Is it optimal ?

• No, since amount of computation
done by each thread is primarily
dependant on the non-zeros in the
"B" matrix. This partition technique
still leads to thread divergence inside
a warp / block.

CPU
GPU

Time

Almost Equal

CPU Start

CPU End

GPU Start

GPU End

Sorted Work Queue
• Sort the rows such that nnz

decreases. CPUs are better suited
for top portion of the matrix as they
are dense and can exploit cache
hierarchy while bottom portion is
suited for GPUs as input is almost
regular.

• Again amount of time taken by CPU
& GPU is (almost) equal.

• Is it optimal ?

• No, since amount of computation
done by each thread is primarily
dependant on the non-zeros in the
"B" matrix. This partition technique
still leads to thread divergence inside
a warp / block.

CPU
GPU

Time

Almost Equal

CPU Start

CPU End

GPU Start

GPU End

Sorted Work Queue
• Sort the rows such that nnz

decreases. CPUs are better suited
for top portion of the matrix as they
are dense and can exploit cache
hierarchy while bottom portion is
suited for GPUs as input is almost
regular.

• Again amount of time taken by CPU
& GPU is (almost) equal.

• Is it optimal ?

• No, since amount of computation
done by each thread is primarily
dependant on the non-zeros in the
"B" matrix. This partition technique
still leads to thread divergence inside
a warp / block.

CPU
GPU

Time

Almost Equal

CPU Start

CPU End

GPU Start

GPU End

Work Queue Vs HH-CPU

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

sc
irc

ui
t

w
eb

ba
se

-1
M

w
eb

-G
oo

gl
e

ca
-C

on
dM

at

in
te

rn
et

db
lp

-2
01

0

em
ai

l-E
nr

on

w
ik

i-V
ot

e

ci
t-P

at
en

ts

Av
er

ag
e

Sp
ee

du
p

Matrix Instance

Unsorted/HH-CPU
Sorted/HH-CPU

Future Work

• Study analytical techniques to identify the threshold in
Phase I of Algorithm HH-CPU

• Similar algorithm can be designed for CSRMM, which
multiplies a sparse matrix A with a dense matrix B.

References

• D. A. Bader and K. Madduri. GTgrpah: A suite of synthetic graph generators.
Available at https://sdm.lbl.gov/⇠kamesh/software/GTgraph/

• A. Buluc and J. R. Gilbert. Challenges and advances in parallel sparse matrix-
matrix multiplication. In Proc. ICPP, pp 503–510, 2008.

• S. Indarapu, M. Maramreddy, and K. Kothapalli. Architecture- and Workload-
aware algorithms for Spare Matrix- Vector Multiplication, Under submission, 2014.

• K. Matam, S. Indarapu, and K. Kothapalli. Sparse Matrix Matrix Multiplication on
Modern Architectures, in Proc. of HiPC, 2012.

• NVIDIA cuSPARSE Library, https://developer.nvidia.com/cusparse

• Stanford Network Analysis Platform dataset , http://www.cise.ufl.edu/ research/
sparse/matrices/SNAP/

https://developer.nvidia.com/cusparse

Thank You

